
Cátedra 20 -- PRÁCTICA PARA LA SOLEMNE

Problema 0
¿Cuál es la diferencia entre los métodos upper e isupper?
Ambos son métodos de string y se refieren a mayúsculas (uppercase). Sin embargo, el método upper
transforma un string en mayúsculas (ej. 'hola'.upper() vale 'HOLA'), mientras que isupper verifica si un
string está en mayúsculas (ej. 'hola'.isupper() vale False, mientras que 'HOLA'.isupper() vale True).

¿Para qué sirve len?
La función len sirve para medir el largo de un string (y de colecciones que contienen varios datos).

¿Qué números genera range(5,19,3)?
Genera los números 5, 8, 11, 14 y 17. El siguiente valor de la sucesión, 20, no sería generado, pues 20 > 19
(el segundo argumento de range).

¿Qué repetición o bucle (for o while) debe usar cuando le dicen su programa recibe un número entero con
el número de inputs adicionales que debe solicitar?
Conviene usar for, puesto que ya sabemos cuántos inputs vendrán.

Problema 1
Contexto. Queremos automatizar el proceso de clasificar las
guindas que están siendo cosechadas. Para esto, las guindas
pasarán por una máquina que las clasificará usando información
de sensores: diámetro, firmeza y calidad de la piel.
Cómo abordar el desafío. Escriba un programa que reciba tres
números enteros: el diámetro (en milímetros), la firmeza (puntaje
en 0-5) y la calidad de la piel (puntaje en 0-5). Su programa deberá
clasificar la cereza como: export premium, export normal,
domestic (consumo doméstico) y rejected (rechazada).
Lógica para la clasificación:

1. Si el diámetro es mayor o igual a 30 mm, su firmeza 4-5 y su calidad de piel es 5, entonces se
etiqueta como export premium

2. Si no, si el diámetro es mayor o igual a 25 mm, su firmeza 4-5 y su calidad de piel es 4-5, entonces
se etiqueta como export

3. Si no, pero si el diámetro es mayor o igual a 20 mm, su firmeza 3-5 y su calidad de piel es 3-5,
entonces se etiqueta como domestic

4. Si no cumple con las anteriores, se debe etiquetar como rejected.

Solución
Este problema es sencillo: las salidas son simples print que se ejecutan en condiciones específicas, así que
no es necesario pensar en la variable de respuesta. Así que nos centramos en el algoritmo.

Primero, obtenemos las variables de entrada

diam = int(input())
firm = int(input())
piel = int(input())

Luego, pasamos a traducir las condiciones a estructura if-elif-else. El primer if quedaría como sigue:

diam = int(input())
firm = int(input())
piel = int(input())

if diam >= 30 and 4 <= firm <= 5 and piel == 5:
print("export premium")

Podemos completar los elif y el else siguiendo este mismo esquema:

diam = int(input())
firm = int(input())
piel = int(input())

if diam >= 30 and 4 <= firm <= 5 and piel == 5:
print("export premium")

elif diam >= 25 and 4 <= firm <= 5 and 4 <= piel <= 5:
print("export")

elif diam >= 20 and 3 <= firm <= 5 and 3 <= piel <= 5:
print("domestic")

else:
print("rejected")

Con esto, el problema se considera resuelto.

Hay también otras maneras de escribir las guardas (condiciones) de los if y elif. Por ejemplo, si dejamos de
comprobar que el puntaje de firmeza y textura de la piel llega hasta 5, entonces podemos escribir:

diam = int(input())
firm = int(input())
piel = int(input())

if diam >= 30 and firm >= 4 and piel == 5:
print("export premium")

elif diam >= 25 and firm >= 4 and piel >= 4:
print("export")

elif diam >= 20 and firm >= 3 and piel >= 3:
print("domestic")

else:
print("rejected")

Esta respuesta también está correcta.

(En clases vimos incluso más formas correctas de contestar este problema.)

Problema 2
Contexto. Ha llegado un barco a un puerto chileno y debemos ir a inspeccionarlo. Revisaremos cada
contenedor y contaremos cuántas cajas vienen y cuánto pesan.
Cómo abordar el desafío. Su programa debe primero preguntar cuántos contenedores hay en el barco y
luego, por cada contenedor, debe primero decir contenedor nuevo, luego debe preguntar cuántas cajas
vienen y, finalmente, debe preguntar el peso de cada caja (kg) del contenedor. Después de todo este
proceso, el programa debe imprimir el número de cajas contabilizadas y el peso total de las cajas.

Solución
Primero identificamos los datos que queremos calcular; estos son el número de cajas y el peso total.
Debemos definir variables para ambas, que serán números enteros e iniciarán con cero:

total_cajas = 0
total_peso = 0

print(total_cajas)
print(total_peso)

Luego pasamos a implementar el algoritmo que nos indican. Primero debemos identificar el número de
contenedores:

total_cajas = 0
total_peso = 0

contenedores = int(input())

print(total_cajas)
print(total_peso)

Luego, como el enunciado dice por cada contenedor, incluiremos un for-range:

total_cajas = 0
total_peso = 0

contenedores = int(input())
for c in range(contenedores):

print(total_cajas)
print(total_peso)

Como por cada contenedor hay que imprimir contenedor nuevo y, además, preguntar cuántas cajas hay en
el contenedor:

total_cajas = 0
total_peso = 0

contenedores = int(input())
for c in range(contenedores):
 print("nuevo contenedor")
 cajas = int(input())

print(total_cajas)
print(total_peso)

Ahora estamos en condiciones de sumar las cajas al total de cajas:

total_cajas = 0
total_peso = 0

contenedores = int(input())
for c in range(contenedores):
 print("nuevo contenedor")
 cajas = int(input())
 total_cajas += cajas

print(total_cajas)
print(total_peso)

Luego, debemos preguntar el peso de cada caja, o sea, debemos hacer otro for y además pedir un input en
cada paso de este nuevo for:

total_cajas = 0
total_peso = 0

contenedores = int(input())
for co in range(contenedores):
 print("nuevo contenedor")
 cajas = int(input())
 total_cajas += cajas
 for ca in range(cajas):
 peso = int(input())

print(total_cajas)
print(total_peso)

Finalmente, debemos sumar este peso al peso total:

total_cajas = 0
total_peso = 0

contenedores = int(input())
for co in range(contenedores):
 print("nuevo contenedor")
 cajas = int(input())
 total_cajas += cajas
 for ca in range(cajas):
 peso = int(input())
 total_peso += peso

print(total_cajas)
print(total_peso)

Y con esto, el problema está contestado.
Por cierto, hay más de una solución para este problema. Otra solución sería:

total_cajas = 0
total_peso = 0

contenedores = int(input())
for co in range(contenedores):
 print("nuevo contenedor")
 cajas = int(input())
 for ca in range(cajas):
 peso = int(input())
 total_peso += peso
 total_cajas += 1

print(total_cajas)
print(total_peso)

Otra solución, aunque no la recomendamos, sería:

total_cajas = 0
total_peso = 0

for co in range(int(input())):
 print("nuevo contenedor")
 for ca in range(int(input())):
 total_cajas += 1
 total_peso += int(input())

print(total_cajas)
print(total_peso)

Problema 3
Contexto. Necesita descifrar un mensaje encriptado. Los mensajes encriptados son strings con signos + y
- intercalados con otros caracteres, que indican si un caracter se debe incluir en la respuesta. Por ejemplo,
el string +h-o+e+l-a+l+o se descifra como hello, puesto que los + anteceden las letras h, e, l, l y o.
Cómo resolver el desafío. Escriba un programa que reciba tales strings y que imprima el mensaje
descifrado.

Solución
Primero identificamos el tipo de respuesta que queremos. Vemos que el tipo es un string (el mensaje
decodificado). Entonces:

deco = ""

print(deco)

Ahora pasamos a escribir el algoritmo entre estas líneas. Primero pedimos el mensaje codificado:

deco = ""

codif = input()

print(deco)

Nuestra estrategia será avanzar por los índices pares del string codificado (codif), o sea, los índices 0, 2, 4,
6, 8, etc, puesto que los caracteres en esos índices son + y -:

deco = ""

codif = input()
for i in range(0, len(codif), 2):

print(deco)

Ahora, debemos chequear el caracter en la posición actual (según el índice i):

deco = ""

codif = input()
for i in range(0, len(codif), 2):

caracter = codif[i]

print(deco)

Luego, si ese carácter es +, entonces debemos agregar el siguiente caracter a la respuesta. El siguiente
caracter está en i+1. Entonces:

deco = ""

codif = input()
for i in range(0, len(codif), 2):

caracter = codif[i]
if caracter == "+":

siguiente = codif[i+1]
deco = deco + siguiente

print(deco)

Y, con esto, el problema queda resuelto.

Otra solución, que no ocupa índices, puede ser así:
• Recorremos el string de izquierda a derecha (esto sería un for)
• Recordamos el último caracter visto
• Si el último caracter era +, agregamso el caracter actual a la respuesta

La estrategia (algoritmo) anterior se puede implementar así:

deco = ""

codif = input()
anterior = ""
for actual in codif:

if anterior == "+":
deco = deco + actual

anterior = actual

print(deco)

En este código, es especialmente importante incluir la línea anterior = actual (destacada en amarillo),
pues nos asegura que recordaremos el caracter actual en el siguiente turno.

